# **IRENA – OLADE** workshop in Lima

Investment in geothermal sector - Example Chile & Tolhuaca project





November 2013 STRICTLY CONFIDENTIAL



#### MRP IN NEW ZEALAND

# About Mighty River Power

#### > A leading integrated New Zealand energy generator and retailer

- > Market capitalisation NZ\$3.1 billion
- More than 90% of generation from renewable sources New Zealand's only large, renewables dominated energy company with both hydro and geothermal generation (geo over 40% of production)
- > Generates c.17% of New Zealand's electricity
- > Ownership 51% NZ government, 49% publicly traded
- > Diversified and flexible generation portfolio
  - > Largest hydro system in the North Island
  - > Base-load geothermal, flexible hydro and gas-fired generation
- > Investment track record and proven geothermal expertise
  - > Mighty River Power is one of the world's largest geothermal power station owners & operators
  - > Successfully developed and commissioned over 330MW of new 'premium' renewable geothermal generation since FY2008 (total investment over US\$1.1 billion), including completion of 82MW Ngatamariki geothermal plant in mid-2013
  - The Company is applying this capability and experience gained through domestic geothermal exploration, development, construction and operations – to invest in international growth opportunities
  - > Over 50 specialist staff in geosciences, reservoir engineering, geothermal engineering and drilling, plus a further 60+ people in geothermal operations

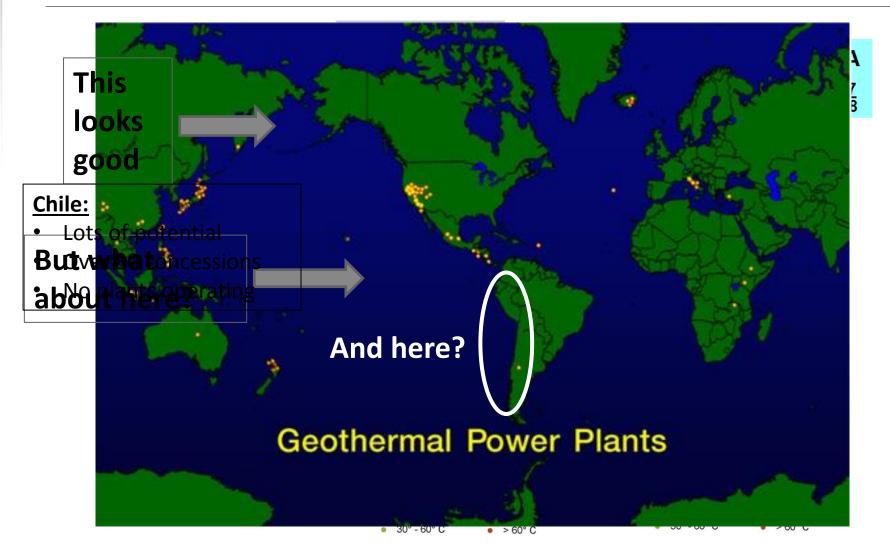






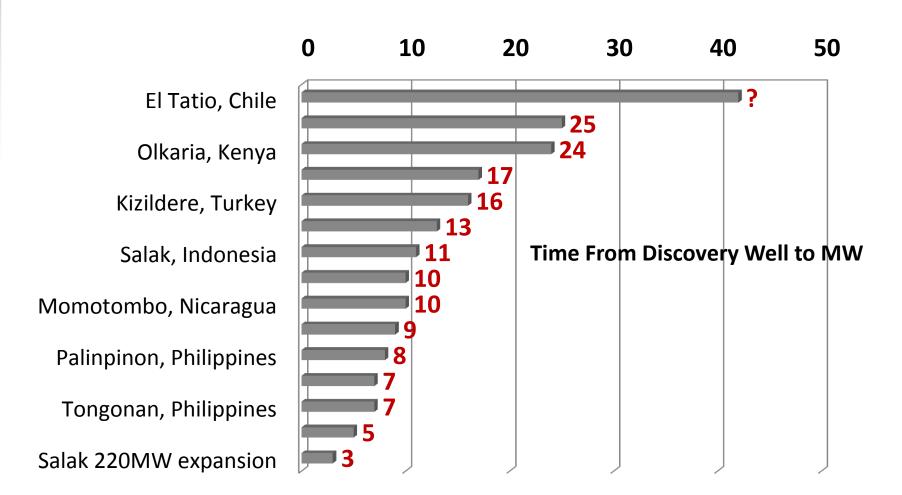
# NZ domestic geothermal partnerships

| Power Station | ١ | Size  | Partner/s                                                                          | Comm   | ercial arrangement                                                         |
|---------------|---|-------|------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------|
| Mokai         |   | 112MW | Tuaropaki Trust                                                                    | Owner: | Tuaropaki Power Company<br>Tuaropaki Trust 75%<br>Mighty River Power 25%   |
| Rotokawa      |   | 34MW  | Tauhara North No.2 Trust                                                           | Owner: | Mighty River Power                                                         |
| Nga Awa Purua |   | 140MW | Tauhara North No.2 Trust                                                           | Owner: | Nga Awa Purua JV<br>Tauhara North No.2 Trust 35%<br>Mighty River Power 65% |
| Kawerau       |   | 100MW | Ngati Tuwharetoa (BoP)<br>Settlement Trust<br>Putauaki Trust<br>Norske Skog Tasman | Owner: | Mighty River Power                                                         |
| Ngatamariki   |   | 82MW  | Tauhara North No.2 Trust                                                           | Owner: | Mighty River Power                                                         |



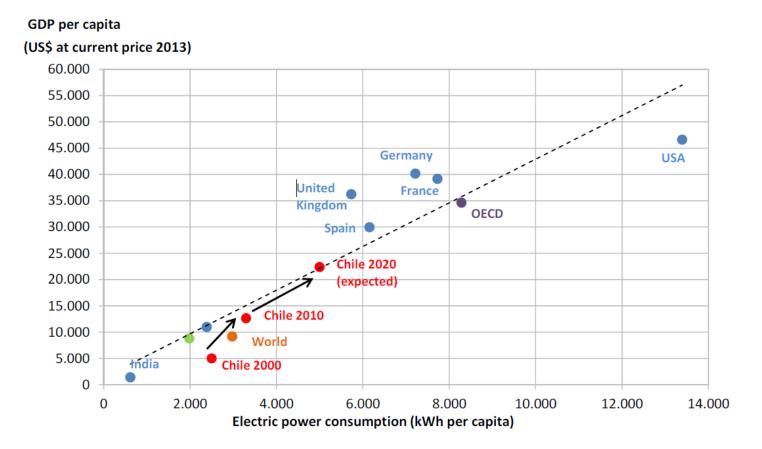

# Looking at Latin America from New Zealand



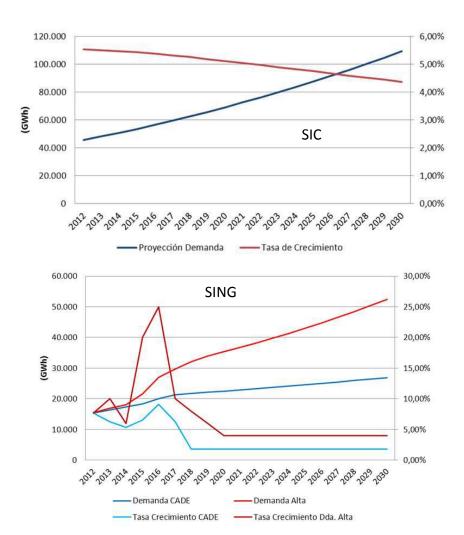



# Latin-American geothermal development





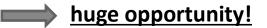

# Latin-American geothermal development






# Economic growth and electric power consumption

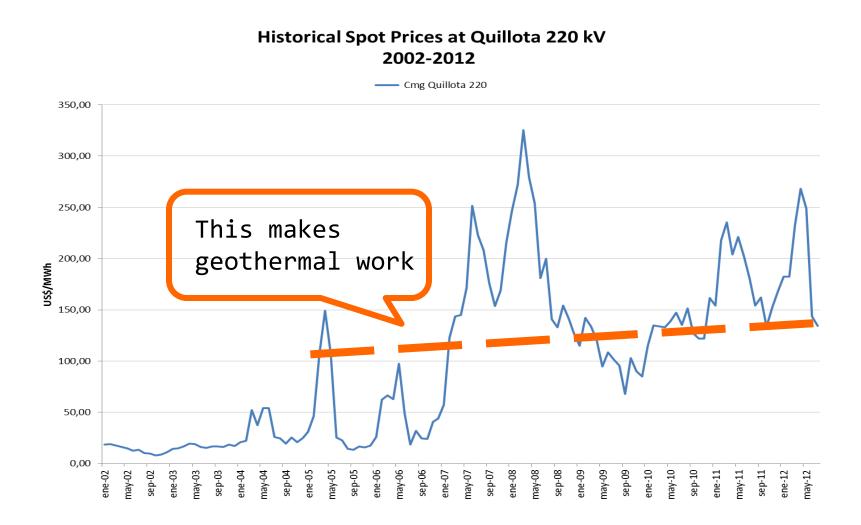







### Electricity demand growth

#### What does this mean?


- Today's demand = 60 TWh/y
- Demand in 2030 = 140 TWh/y

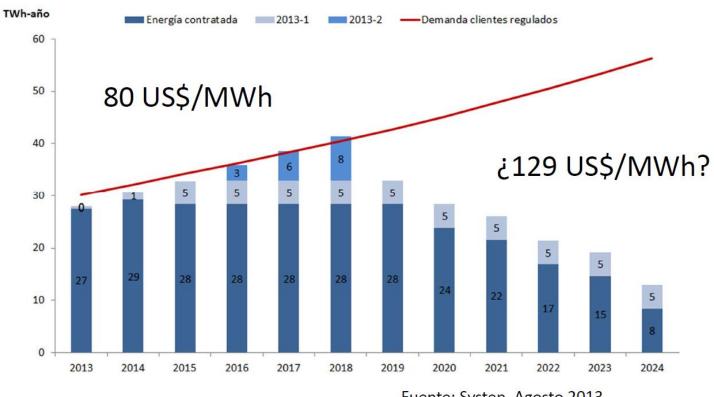


- 20% NCRE = 28 TWh/y
- Intermittent sources (40%) = <u>8000 MW</u> installed capacity
- Better mix:
  - o 2000 MW geothermal
  - 3000 MW intermittent



# Prices are high and will probably stay that way



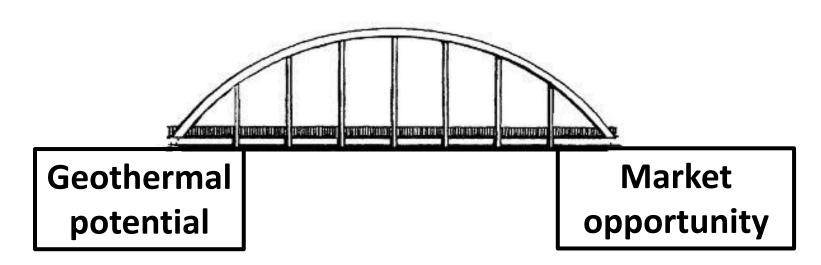



# Prices are high and will probably stay that way

|        | Teopología            | Costo de desarrollo [US\$/MWh] |          |     |
|--------|-----------------------|--------------------------------|----------|-----|
| 350,00 | Tecnología            | min                            | promedio | max |
|        | Hidráulica de Pasada  | 65                             | 83       | 104 |
| 300,00 | Hidráulica de Embalse | 66                             | 85       | 102 |
|        | Mini Hidráulica       | 68                             | 94       | 129 |
| 250,00 | Carbón                | 89                             | 97       | 104 |
| 200,00 | GNL Ciclo Combinado   | 95                             | 104      | 113 |
|        | Solar Fotovoltaica    | 93                             | 113      | 141 |
| 150,00 | Eólica                | 87                             | 130      | 175 |
| 100,00 | Geotérmica            | 104                            | 130      | 134 |
|        | GNL Ciclo Abierto     | 146                            | 161      | 176 |
| 50,00  | Diesel                | 194                            | 236      | 279 |
| ~      | Termosolar            | 215                            | 286      | 408 |



# Prices are high and will probably stay that way




Fuente: Systep, Agosto 2013

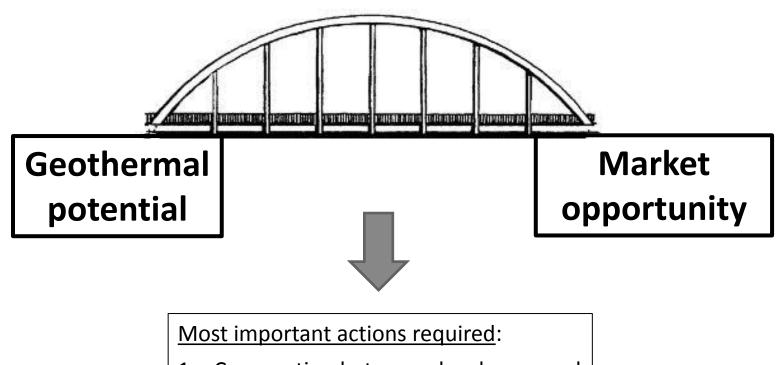


### ANALYSIS

# How do we bridge the gap?



### ANALYSIS


# How do we bridge the gap?

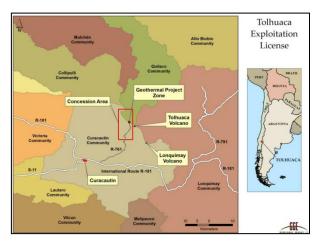
| <u>The gap</u> |                                                                                             |      |                                       |   |  |
|----------------|---------------------------------------------------------------------------------------------|------|---------------------------------------|---|--|
| Externalities  |                                                                                             | STOP | -24                                   | 0 |  |
|                | Interesting resources                                                                       |      |                                       | X |  |
| Physical       | <ul> <li>Very limited knowledge ▶ greenfield development ▶ high exploration risk</li> </ul> | X    |                                       |   |  |
|                | <ul> <li>Remote and difficult locations </li> <li>High drilling cost</li> </ul>             | X    |                                       |   |  |
|                | <ul> <li>No transmission lines High cost and delays</li> </ul>                              | X    | :                                     |   |  |
| Legal •        | Laws and regulations                                                                        |      | X                                     |   |  |
|                | Environmental permitting                                                                    |      | X                                     |   |  |
| Market         | Rather high structural price level in the SIC                                               |      |                                       | X |  |
|                | • Strict conditions at tenders for regulated clients ► No access to 65% of market           | X    |                                       |   |  |
|                | Private clients need planning certainty                                                     | X    | · · · · · · · · · · · · · · · · · · · |   |  |



### ANALYSIS

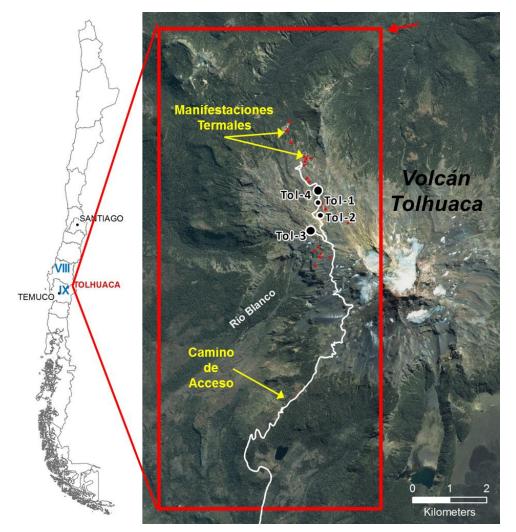
# How do we bridge the gap ?




- 1. Cooperation between developers and authorities to reduce exploration risk.
- 2. Facilitate market access.



### Tolhuaca general project description


- Located on the border between Araucanía and Biobío Regions of Chile, near the town of Curacautín, on the northwest flank of the dormant Tolhuaca Volcano.
- Situated within the San Gregorio (Tolhuaca) geothermal exploitation concession granted in January 2010 (7,800 ha), which replaced the exploration concession granted in 2005.
- Well positioned to be the first geothermal plant in Chile's Central Interconnected System (Sistema Interconectado Central, SIC).
- MRP has already invested significantly, including:
  - o Drilling of exploration and production wells.
  - Investment in geological mapping and resource study; construction of access roads; and installation and construction of a camp for more than 100 people.

| Project snapshot               |                                                                                                   |  |  |  |
|--------------------------------|---------------------------------------------------------------------------------------------------|--|--|--|
| Location                       | Southern Chile, 8 <sup>th</sup> & 9 <sup>th</sup> regions                                         |  |  |  |
| Gross capacity                 | 70.0 MW                                                                                           |  |  |  |
| Net capacity                   | 65.3 MW                                                                                           |  |  |  |
| Annual net expected generation | 535 GWh per year (expected plant factor 95%)                                                      |  |  |  |
| COD                            | 2018                                                                                              |  |  |  |
| Investment                     | Over US\$400 million                                                                              |  |  |  |
| Technology                     | Flash                                                                                             |  |  |  |
| Tx line                        | 2x220 kV, 68 km., dedicated Tx line<br>Connected directly to the SIC near the city of<br>Victoria |  |  |  |





# Tolhuaca general project description





### Work done to date

- Two exploration slim-holes drilled in 2009/10 proved the existence of a deep benign-fluid high-temperature geothermal reservoir.
- Access via a mountain road, drilling pads, camp and other installations were built in 2011.
- Two full-size exploration wells drilled in 2011/12 to 2.400 meters depth reached the reservoir.
- Geophysics show a sizable geothermal field with a potential capacity of 70 MW. Additional geoscientific work is planned for summer 2013/14 to support this assumption.
- Planning and basic engineering done for a 70 MW case and a 35 MW case (as fall-back position).
- Environmental study completed for a 70 MW plant, permit (RCA) received in May 2013.
- Connection to the grid is planned through a 220 kV line to be built to a new substation in Victoria.





# Work done to date



Repairing the second se



# Feasibility analysis

#### Detailed feasibility studies conducted for:

- 9-12 MW wellhead generator:
  - technically possible as back-pressure or condensing unit
  - o 35 km local 23 kV transmission line required
  - o not economically viable as stand-alone project
- 35 MW plant:
  - possible as first block
  - o full 220 kV transmission line required
  - economically viable only as fall-back position
- 70 MW plant:
  - o as per environmental permit
  - 220 kV transmission line with development partners
  - returns acceptable with high-price PPA



