

# SOUTHERN AFRICAN POWER POOL www.sapp.co.zw

# Update on RE Power in the SAPP Dr. Lawrence Musaba SAPP CC Manager

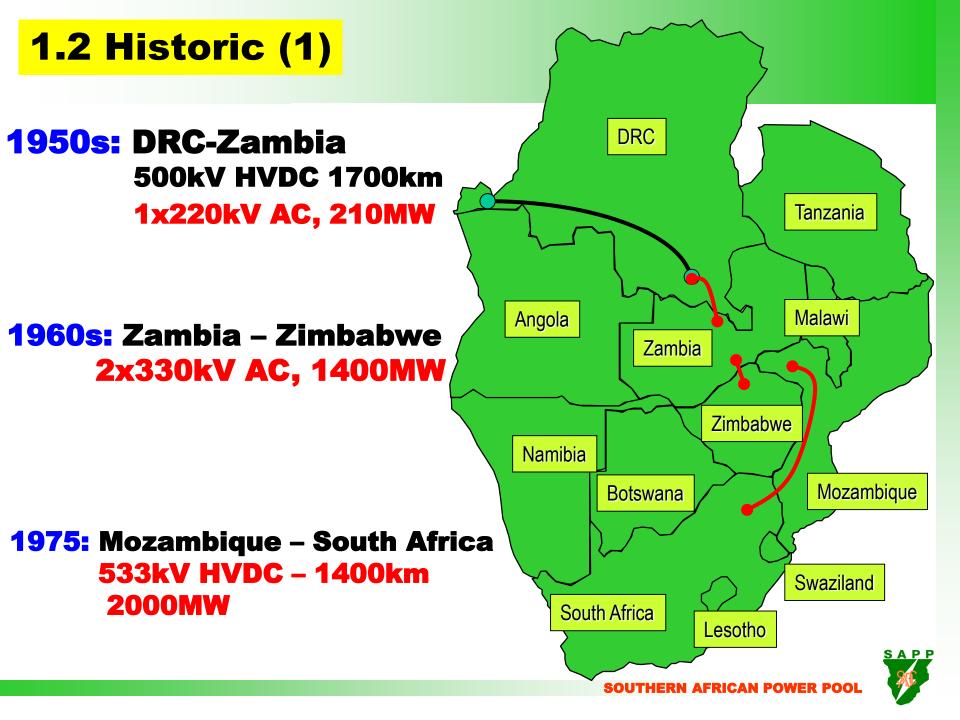
IRENA Initiative for an Africa Clean Energy Corridor Executive Strategy Workshop IRENA Headquarters Abu Dhabi, United Arab Emirates 22-23 June 2013

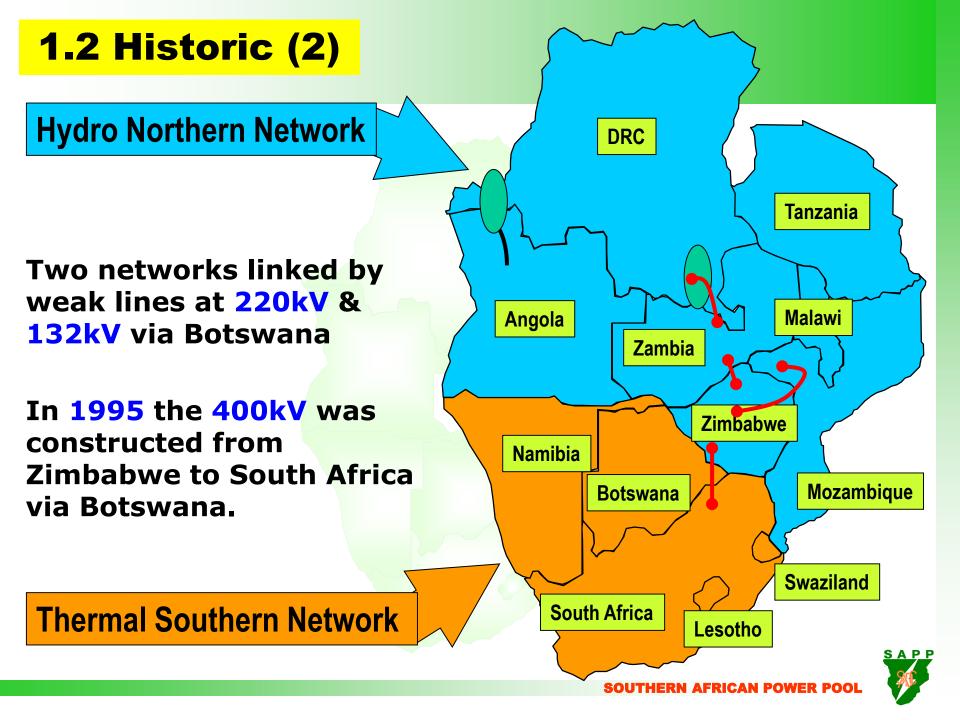


DUTHERN AFRICAN POWER POO



- **1.** Overview of the SAPP
- **2.** The SAPP Master Plan of 2009
- **3.** Generation Projects
- **4.** Transmission Projects
- 5. Technical & Economic Parameters affecting Integration of Renewable Energy in the pool
- **6.** Conclusions





# **1. OVERVIEW OF THE SAPP**

# **1.1 Geographic**

- 12 Countries
- 250 Million people
- Average Electricity growth rate 2.5% p.a.
- Energy consumption 400TWh/year







# **1.2 Historic (3)**

- The interconnection of the northern and southern networks created a platform for regional trade and cooperation.
- In 1995, the Ministers responsible for energy in the Southern African Development Community (SADC) signed Inter-Government MOU that lead to the creation of a power pool under the name, Southern African Power Pool (SAPP).
- The Aim was to optimise the use of available energy resources in the region and support one another during emergencies.



# **1.4 Governing Legal Documents**

#### Inter-Governmental MOU

- Established SAPP.
- Signed by SADC Member Countries in 1995.
- Revised document signed on 23 February 2006.
- Inter-Utility MOU
  - Established the Management of SAPP.
  - Revised document signed on 25 April 2007.
- Agreement Between Operating Members
  - Signed by Operating Members only.
  - Review document signed in April 2008.

#### Operating Guidelines

Under Review and will be finalized in 2013.

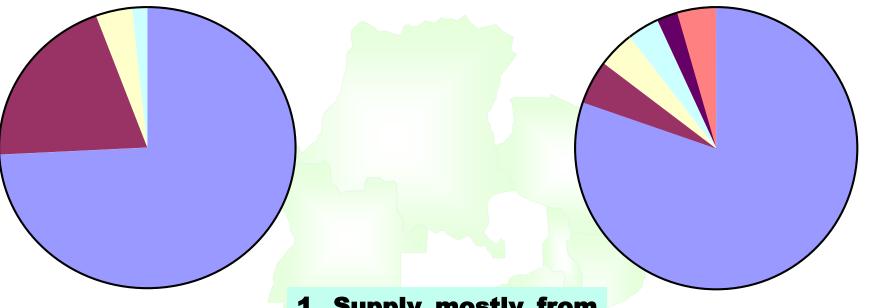


## **1.5 Membership**

| No                   | Full Name of Utility                                        | Status                                                        | Abbreviation | Country      |  |
|----------------------|-------------------------------------------------------------|---------------------------------------------------------------|--------------|--------------|--|
| 1                    | Botswana Power Corporation                                  | OP                                                            | BPC          | Botswana     |  |
| 2                    | Electricidade de Mocambique                                 | OP                                                            | EDM          | Mozambique   |  |
| 3                    | Hidro Electrica Cahora Bassa                                | OB                                                            | HCB          | Mozambique   |  |
| 4                    | Mozambique Transmission Company                             | OB                                                            | MOTRACO      | Mozambique   |  |
| 5                    | Electricity Supply Corporation of Malawi                    | NP                                                            | ESCOM        | Malawi       |  |
| 6                    | Empresa Nacional de Electricidade                           | NP                                                            | ENE          | Angola       |  |
| 7                    | ESKOM                                                       | OP                                                            | Eskom        | South Africa |  |
| 8                    | Lesotho Electricity Corporation                             | OP                                                            | LEC          | Lesotho      |  |
| 9                    | NAMPOWER                                                    | OP                                                            | Nam Power    | Namibia      |  |
| 10                   | Societe Nationale d'Electricite                             | OP                                                            | SNEL         | DRC          |  |
| 11                   | Swaziland Electricity Board                                 | OP                                                            | SEB          | Swaziland    |  |
| 12                   | Tanzania Electricity Supply Company Ltd                     | NP                                                            | TANESCO      | Tanzania     |  |
| 13                   | ZESCO Limited                                               | OP                                                            | ZESCO        | Zambia       |  |
| 14                   | Copperbelt Energy Corporation                               | ITC                                                           | CEC          | Zambia       |  |
| 15                   | Lunsemfwa Hydro Power Company                               | IPP                                                           | LHPC         | Zambia       |  |
| 16                   | Zimbabwe Electricity Supply Authority                       | OP                                                            | ZESA         | Zimbabwe     |  |
| <mark>OB</mark> = Ob | perating Member<br>server<br>lependent Transmission Company | NP = Non-Operating Member<br>IPP = Independent Power Producer |              |              |  |
|                      |                                                             |                                                               |              |              |  |

**CEC & LHPC (Zambia) are new Members of SAPP** 



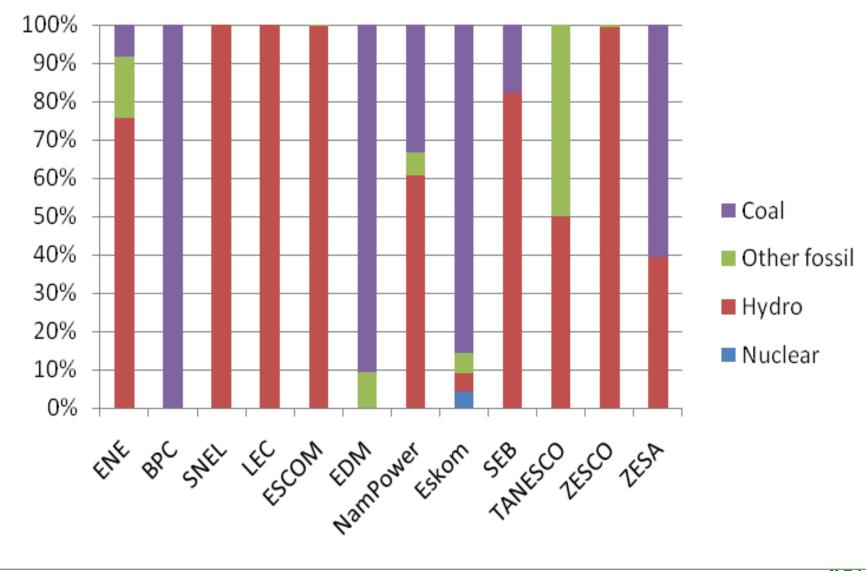

## **1.6 SUPPLY AND DEMAND**

| No.       | Country         | Utility          | Installed<br>Capacity<br>[MW] As at<br>Jan 2013 | Available<br>Capacity<br>[MW]<br>Jan 2013 | Suppressed<br>Demand &<br>Forecast<br>Demand | Capacity<br>Shortfall<br>including<br>reserves,<br>MW | Calculated<br>Reserve<br>Margin, % |
|-----------|-----------------|------------------|-------------------------------------------------|-------------------------------------------|----------------------------------------------|-------------------------------------------------------|------------------------------------|
| 1         | Angola          | ENE              | 1,793                                           | 1,480                                     | 1341                                         |                                                       |                                    |
| 2         | Botswana        | BPC              | 352                                             | 322                                       | 604                                          |                                                       |                                    |
| 3         | DRC             | SNEL             | 2,442                                           | 1,170                                     | 1398                                         |                                                       |                                    |
| 4         | Lesotho         | LEC              | 72                                              | 72                                        | 138                                          |                                                       |                                    |
| 5         | Malawi          | ESCOM            | 287                                             | 287                                       | 412                                          |                                                       |                                    |
| 6         | Mozambique      | EDM /HCB         | 2308                                            | 2,279                                     | 636                                          |                                                       |                                    |
| 7         | Namibia         | NamPower         | 393                                             | 360                                       | 635                                          |                                                       |                                    |
| 8         | South Africa    | Eskom            | 44,170                                          | 41,074                                    | 42416                                        |                                                       |                                    |
| 9         | Swaziland       | SEC              | 70                                              | 70                                        | 255                                          |                                                       |                                    |
| 10        | Tanzania        | TANESCO          | 1380                                            | 1,143                                     | 1444                                         |                                                       |                                    |
| 11        | Zambia          | ZESCO / CEC/LHPC | 1,870                                           | 1,845                                     | <b>2287</b>                                  |                                                       |                                    |
| #REF!     | Zimbabwe        | ZESA             | 2,045                                           | 1,600                                     | <b>2267</b>                                  |                                                       |                                    |
|           | TOTAL SAPP      |                  |                                                 | 51,702                                    | 53,833                                       | (7,709)                                               | -4.1%                              |
| Total Int | terconnected \$ | SAPP             | 53,722                                          | 48,792                                    | 50,636                                       | (7,079)                                               | - <b>3.8</b> %                     |



#### **1.7 Generation Mix** Year 2012

1.8 Country Contribution Year 2012




- **74.3%** Coal
- **20.1%** Hydro
- □ 4.0% Nuclear
- □ 1.6% Gas/Diesel

- 1. Supply mostly from coal.
- 2. Largest market is South Africa.
- **80.4%** South Africa
- 5.0% Mozambique
- **4.1%** Zimbabwe
- **3.6%** Zambia
- **2.6%** DRC
- 4.4% Rest



# **1.9 Current Utility Generation Mix Contribution**







# **1.10 Existing Hydropower Generation in the SAPP**

|    |              |          | CAPACITY |            |
|----|--------------|----------|----------|------------|
| NO | COUNTRY      | UTILITY  | MW       | PER CENT % |
| 1  | Botswana     | BPC      | NIL      | NIL        |
| 2  | Mozambique   | EDM      | 498      | 91         |
| 3  | Angola       | ENE      | 760      | 64         |
| 4  | Malawi       | ESCOM    | 286      | 100        |
| 5  | South Africa | Eskom    | 2,000    | 5          |
| 6  | Lesotho      | LEC      | 72       | 100        |
| 7  | Namibia      | NamPower | 240      | 61         |
| 8  | Swaziland    | SEC      | 63       | 88         |
| 9  | DRC          | SNEL     | 2,442    | 100        |
| 10 | Tanzania     | TANESCO  | 561      | 50         |
| 11 | Zimbabwe     | ZESA     | 750      | 37         |
| 12 | Zambia       | ZESCO    | 1,802    | 99         |
| 13 | Mozambique   | HCB      | 2,075    |            |
| 14 | Zambia       | LHPC     | 40       |            |
|    | TOTAL        |          | 11,589   |            |

 The current hydropower contribution is only 20% of the SAPP generation mix.



# 2. OVERVIEW OF SAPP MASTER PLAN

# **2.1 OBJECTIVES**

The Pool Plan Study Objectives were:

- **Develop an integrated generation and transmission expansion plan for SAPP.**
- Determine the benefits that can be derived for the members from coordination of their individual expansion plans.



# **2.2 DEVELOPMENTAL PROCESS**

The process for developing the SAPP Pool Plan of 2009 included:-

- Adoption of the planning assumptions
- Determination of the electricity load forecasts
- Modelling scenarios based on planning assumptions
- Determination of the base plan derived from a least cost generation investment
- Risk adjustment of the base plan, based on:
  - i. Most probable scenarios
  - ii. National Government policy & objectives
- Approval of the SAPP Pool Plan



# **Two cases were considered:**

 A Base Case based on the existing generation & transmission plans for each of the 12 SAPP utilities.

An Alternative Case that considers various scenarios for the optimization of generation and transmission capacity additions assuming free trade, no constraints (both internal and external).



- Initial Alternative Case was based on the now revised demand forecast. Initially the load forecast was set at 2.4%. In the revised one, 4.3% is used.
- Updated Alternative Case that treats nuclear units with operating dates 2017-2025 as committed.
- Revised Alternative Case that treats nuclear units as not committed.

The Revised Alternative Case was adopted for the SAPP Pool plan.



### **2.4 POOL PLAN RESULTS**

- Capacity deficit from 2008 to 2013
- Base Case 4,870 MW more capacity and USD 8.7 billion more expensive (2009 to 2025)
- > High cost coal displaced by low cost hydro
- Alternative case adds 8,400 MW less thermal and 5,600 MW more hydro than Base Case
- Fotal additional capacity of 57,000 MW at a cost of USD 83 billion
- When nuclear is not committed financial requirements reduce by USD 48 billion.
- At CO2 cost of USD30 /tonne nuclear, hydro, combined cycle replace coal units.



### **2.4 POOL PLAN RESULTS**

- Confirms significance of coordinated investments
- Regional Least Cost Plan dominated by hydro, nuclear power based plants & gas based plants
- Most new coal fired generation were not accepted in the least cost plan
- Interconnecting Non Operating Members should be accelerated.
- Recommends a central transmission corridor from DRC to South Africa via Zambia and Zimbabwe

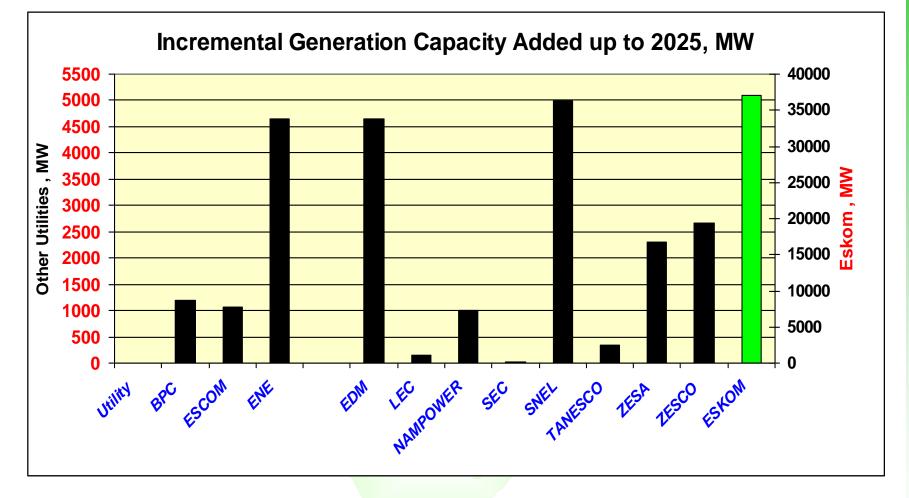


# **GENERATION PROJECTS**

The Alternative case shows that 56,687 MW of new additional power generation capacity would be required by 2025 as follows:

Coal fuel plants provide most new capacity 23,883 MW 18,045 MW Hydro and pumped storage are next Diesel fueled peaking units 12,594 MW 2,164 MW Gas fueled combined cycle plants

The optimized plan includes no new nuclear.

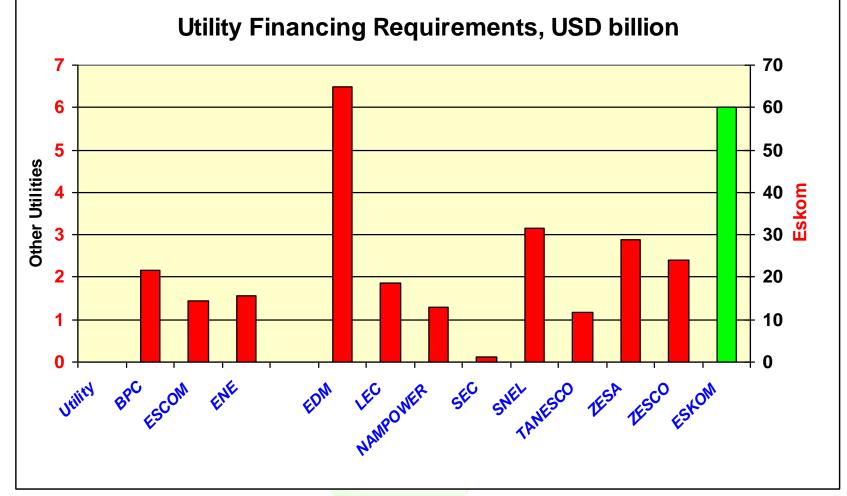

In 2025, a total of 102,871 MW would be required in the SAPP: V Coal 57,415 MW [55.81%] reduction in Δ coal ✓ Hydro & PS 27,016 MW [26.26%] from 74% to 56% and [13.52%]

13,908 MW ✓ Diesel [2.66%] Natural Gas 2,732 MW 1,800 MW [1.75%] ✓ Nuclear

an increase in hydro from 20% to 26%.

### 3.1 NEW GENERATION CAPACITY ADDED: 2010 to 2025

## **Regional Integrated Expansion Plan**




#### A total of 57,000 MW is added



## 3.2 FINANCING REQUIREMENTS 2010 to 2025

# **Regional Integrated Expansion Plan**



#### A total of USD 83 billion is needed



## **3.3 Planned Hydropower Projects in the SAPP**

| NO | COUNTRY         | PROJECT NAME   | CAPACITY MW | EXPECTED DATE |  |
|----|-----------------|----------------|-------------|---------------|--|
| 1  | DRC             | INGA 3         | 3,500       | 2017          |  |
| 2  | ZIMBABWE/ZAMBIA | BATOKA         | 1,600       | 2018          |  |
| 3  | MOZAMBIQUE      | MPHANDA NKUWA  | 1,500       | 2017          |  |
| 4  | MOZAMBIQUE      | HCB NORTH BANK | 1,245       | 2015          |  |
| 5  | LESOTHO         | KOBONG         | 800         | 2017          |  |
| 6  | ZAMBIA          | KAFUE GORGE    | 750         | 2017          |  |
| 7  | NAMIBIA         | BAYNES         | 500         | 2017          |  |
| 8  | ZIMBABWE        | KARIBA SOUTH   | 300         | 2015          |  |
| 9  | ANGOLA          | CAMPAMBE II    | 180         | 2012          |  |
| 10 | SOUTH AFRICA    | INGULA         | 333         | 2013          |  |
| 11 | ZAMBIA          | KARIBA NORTH   | 360         | 2013          |  |
|    | TOTAL           |                | 11,068      |               |  |

 The SAPP plans to increase hydropower contribution from current 20% to 26% by 2025 if all planned hydropower projects are implemented.



# **3.4 Other Planned Hydropower Projects in the Zambezi River Basin**

| NO | COUNTRY         | PROJECT NAME     | CAPACITY MW | EXPECTED DATE |
|----|-----------------|------------------|-------------|---------------|
| 1  | ZIMBABWE        | VICTORIA FALLS S | 390         | NO DATE       |
| 2  | ZAMBIA/ZIMBABWE | DEVILS GORGE     | 1,200       | 2017          |
| 3  | ZAMBIA/ZIMBABWE | MUPATA GORGE     | 1,200       | 2018          |
| 4  | MOZAMBIQUE      | BOROMA           | 160         | 2018          |
| 5  | MOZAMBIQUE      | LUPATA           | 550         | 2017          |
| 6  | MOZAMBIQUE      | RUO              | 100         | 2017          |
| 7  | MOZAMBIQUE      | LURIO            | 150         | 2015          |

The advantage of the Zambezi river basin is that it is along the SAPP central transmission corridor and transmission integration would be cheaper to the SAPP compared to the Congo river basin.



# 3.5 COMMITTED GENERATION PROJECTS (NEW & REHAB)

| No    | Country    | <b>Committed Generation Capacity, MW</b> |       |       |       |        |
|-------|------------|------------------------------------------|-------|-------|-------|--------|
|       |            | 2013                                     | 2014  | 2015  | 2016  | TOTAL  |
| 1     | Angola     | 389                                      | 640   | 550   | 1,246 | 2,825  |
| 2     | Botswana   | 600                                      | -     | -     | 300   | 900    |
| 3     | DRC        | 55                                       | -     | 580   | _     | 635    |
| 4     | Lesotho    | -                                        | -     | 35    | _     | 35     |
| 5     | Malawi     | 64                                       | -     | -     | _     | 64     |
| 6     | Mozambique | -                                        | 150   | 300   | 300   | 750    |
| 7     | Namibia    | -                                        | -     | 120   | 50    | 170    |
| 8     | RSA        | 923                                      | 3,105 | 2,543 | 1,322 | 7,893  |
| 9     | Swaziland  | -                                        | -     | -     | -     | -      |
| 10    | Tanzania   | 60                                       | 160   | 500   | 1,110 | 1,830  |
| 11    | Zambia     | 230                                      | 180   | 435   | 494   | 1,339  |
| 12    | Zimbabwe   | -                                        | 300   | 30    | 300   | 630    |
| TOTAL |            | 2,321                                    | 4,535 | 5,093 | 5,122 | 17,071 |

**3%** is Renewable Energy (Wind and Solar) from 2013 to 2016



**SOUTHERN AFRICAN POWER POOL** 

# 4. TRANSMISSION PROJECTS

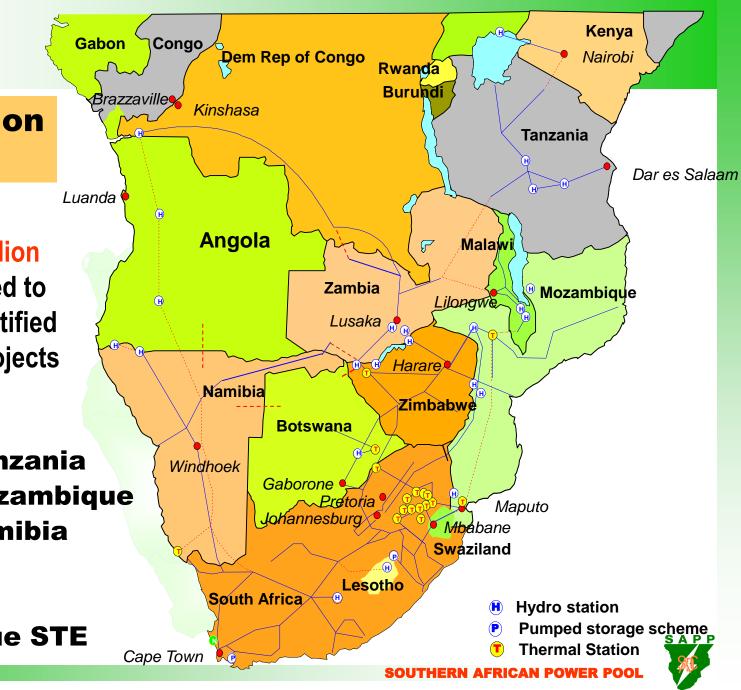
The Alternative case shows that additional facilities would be needed to move power from areas of excess, primarily:

- ✓ SNEL (DRC),
- EdM (Mozambique) and
- ✓ ZESCO (Zambia).
- To areas of shortage, primarily:
- Eskom (South Africa) and
- ✓ BPC (Botswana).



#### **PRIORITY TRANSMISSION PROJECTS**

Transmission projects are divided as follows:


- Outstanding transmission interconnectors whose aim is to interconnect non-operating members of the SAPP:
  - Mozambique-Malawi interconnector,
  - Zambia-Tanzania-Kenya Interconnector, and
  - Interconnection of Angola.
- Transmission interconnectors aimed at relieving congestion on the SAPP grid, and
- New transmission interconnectors aimed to evacuate power from generating stations to the load centres.



# Transmission Projects

Over USD 5.6 billion would be required to develop the identified transmission projects

- Zambia-Tanzania
  Malawi-Mozambique
- Angola-Namibia
- **ZIZABONA**
- СТС
- Mozambique STE



# 5. TECHNICAL & ECONOMIC PARAMETERS AFFECTING INTEGRATION OF RENEWABLE ENERGY

- a. The successful integration of renewable energy resources requires:
  - i. Supporting government policies & regulatory frameworks,
  - ii. Sustainable tariffs and favourable economics, and
  - iii. The proper application of technology.

### **Government policies:**

- Establish locations for siting renewable resources that may be necessary to successfully integrate these resources.
- Should be consistent over time & should provide incentives to developers.



# 5. TECHNICAL & ECONOMIC PARAMETERS AFFECTING INTEGRATION OF RENEWABLE ENERGY

- b. The following technical considerations should be considered when integrating renewable energy into the SAPP grid:
  - i. capacity factor,
  - ii. voltage control capabilities,
  - iii. tolerance to voltage dips resulting from contingencies,
  - iv. ability to help regulate the system for frequenting variations,
  - v. acceptable flicker and harmonise emission performance, and
  - vi. other capability functions.



# 6. CONCLUSION

- i. Most renewable energy in the SAPP is from hydro.
- ii. Efforts are being made to include solar and wind in the SAPP Generation mix by 2016.
- iii. Governments in SADC are still developing policies and regulatory frameworks on how to deal with RE:
  - The commitment of nuclear energy in South Africa is a policy choice rather than economic.
- iv. SAPP plans to decrease coal generation from 74% to 56% and increase hydro and other RE generation (including hydro) from 20% to 27% by 2025.





