

BATTERY STORAGE

ACCELERATING THE ENERGY TRANSITION

MICHAEL TAYLOR

MTAYLOR@IRENA.ORG 15 MARCH 2017

The Energy Sector is Being Transformed

A *virtuous cycle* is unlocking the *economic*, *social* and *environmental* benefits of renewables

Latest RE capacity deployment

Latest RE capacity deployment

The importance of battery storage and roles

- Battery storage important part of transition now(e.g. SHS, islands, frequency response and EVs)
- Long term (integrating v high share of VRE)
- In the next 3-5 years, the storage industry is positioned to scale and echo the stark growth seen in the solar PV industry.
- Incremental improvements in energy storage technologies, developments in regional regulatory and market drivers, and emerging business models are poised to make energy storage a growing and viable part of the electricity grid
- In the stationary sector, increased economic applications due to cost declines are expected for grid services as well as increased RE penetration on islands/mini-grids and off-grid

SOLAR PV IN AFRICA: COSTS AND MARKETS

NEW OPPORTUNITIES UNLOCKED

Electrification stages using solar PV

Solar PV costs in Africa

Source: IRENA Renewable Cost Database, 2016

Operating and proposed utility scale solar PV project installed costs in Africa, 2010-2018 (IRENA)

Solar PV costs in Africa

Note: All system sizes have been rounded.

Solar PV costs in Africa

0																																							
Andola	Benin	Botswana	Burkina Faso	Burundi	Cameroon	CAR	Chad	Congo	Côte d'Ivoire	Djibouti	Equatorial Guinea	Eritrea	Ethiopia	Gabon	Gambia	Ghana	Kenya	Lesotho	Liberia	Madagascar	Malawi	Mali	Mauritania	Namibia	Niger	Nigeria	Rwanda	Senegal	Sierra Leone	Somalia	South Africa	Sudan	Swaziland	spublic of Tanzania	Togo	Uganda	Zambia	Zimbabwe	

Operating and proposed utility scale solar PV project installed costs in Africa, 2010-2018 (IRENA)

Tokelau

Generation technologies

- Solar PV
- (bio-)Diesel backup

Storage technologies

• OPzS Lead-acid batt.

Turtle Island Resort, Fiji

- Hotel size: 14 cottages
- **RET**: Off-grid solar PV system with 240 kW of capacity and battery storage
- Capital cost: US\$ 1.5 million
- Payback time: 6 years
- Savings from avoided diesel cost: US\$ 250,000/year

#REmap

ROADMAP FOR A RENEWABLE ENERGY FUTURE

The energy transition

- Doubling the share of renewable energy by 2030 is critical for the achievement of sustainable energy and climate change objectives
- Oubling renewables in the world's energy mix by 2030 will lead to savings exceeding costs up to 15 times
- The transition to renewables, with greater energy efficiency, can limit the global temperature increase to 2 degrees or below

Keeping on track

Doubling renewables is critical for meeting climate objectives

REMAP transport projections

Transport TFEC (EJ/yr)

REmap sees a significant increase in electrification which covers more than 20% of the sector's total energy demand whilst bringing important efficiency gains. Biofuels will cover nearly a quarter of all demand

REMAP: The EV fleet evolution

Battery costs declines & performance improvements will play a key role in the growth rates of the EV fleet globally

REMAP: EV storage needs

Total battery storage capacity could reach more than 10 TWh in by 2050

Four-fifths of capacity in EVs

The power sector will lead the way

Variable renewable energy share in power generation (%)

In the Reference Case, 15 of 40 countries will have a VRE share larger than 10% by 2030. With the REmap Options, 20 countries will have a share larger than 25%.

The power sector will lead the way

20

Goals for today

Familiarise you with IRENA's positioning of the analysis

Present the initial results of the analysis

Seek your feedback on analysis/assumptions

Identify any gaps in analysis

Next steps: Feedback, Intersolar, report review