

Battery storage cost reduction potentials & market outlook to 2030

Potential locations and applications of electricity storage

Off-grid applications

Electrification rate in sub-Saharan Africa is the lowest of any developing region

Source: IEA, 2014a and World Bank, 2015b

National electrification rates by country in Africa

Off-grid applications

Serious under investment in power generation capacity in sub-Saharan Africa

Source: World Bank, 2015a

Electrical outages per month and average duration in Africa

Huge untapped potential for PV storage mini-grids

Existing oil /diesel generator capacity in sub-Saharan Africa

and average size per generator

Storage, key component

	Stand-alone			Grids			
	DC		AC	AC/DC		AC	
System	Solar lighting kits or lanterns	DC SHS	AC SHS: single- facility AC systems	Nano-grid Pico-grid	Micro-grid Mini-grid	National/regional grid	
		Off-grid	Off-grid or on		r on-grid	On-grid	
Application	Lighting	Lighting and appliances	Lighting and appliances	Lighting and appliances, emergency power	All uses (including industrial)	All uses (including industrial)	
Key component	Generation, storage, lighting, cell charger	Generation, storage, DC special appliances	Generation, storage, lighting, AC appliances, building wiring	Generation plus single- phase distribution	Generation plus three- phase distribution plus controller	Generation plus three-phase distribution plus transmission	
Typical size	0-10 W	11 W to 5 kW	100 W to below 5 kW	5 kW to 1 MW		Residential (100 W to <5 kW) mini-grid (5 kW to <1 MW) and utility-scale (>1 MW)	

Source: Adapted from IRENA, 2015b

Note: "Typical size" categories were created for the convenience of cost analysis.

Storage, key component

Clearly reduced cost/Ah when battery size increases

SHS battery costs relative to battery size and PV system size in Africa, 2012-2015

Storage, key component

Battery cost account the largest single share of SHS 29% of total costs (USD 2.7/W)

Small SHS (<1kW) cost breakdown by cost component, 2012-2015

Battery costs account 14-69% of total installed costs

Small SHS (<1kW) cost breakdown by cost component shares, 2012-2015

Context

IRENA's RE costs and markets team is preparing a study to analyze and discuss:

Technology overview

Scope of analysis

Feasibility

Applications examples

		Pumped Hydro CAES	Flywheel	Lead-Acid Batteries	Li-Ion Batteries	High Temperature	Flow Batteries
	Ultra fast response						
Grid services	Primary Reserve Control						
	Secondary Reserve Control						
	Minute Reserve						
	Long-time Storage						
	Ramping						
	Avoid Redispatch						
	Black start capability						
ivate usage	Increase Self-Consumption						
	Trade Energy (Spotmarket)						
	Peak shifting						
	Increase Power quality						
I	UPS functionality						

Technically feasible, economic operation possible Technically feasible with restrictions Technically not feasible Technically feasible, economically not advisable

Current and future cost of battery electric storage for electric power

Detailed descriptions of 13 storage technologies including their required balance of system

Strengths and weaknesses of each technology are highlighted, possible development paths including opportunities and threads are discussed

One of the most comprehensive technology overviews for stationary storage systems available on the market today.

Typical system designs for 12 typical storage applications

Excel Tool to calculate the Cost of Service of all storage technologies in different applications

Current prices of different storage technologies

International Renewable Energy Agency

Current energy installations costs (USD/kWh), reference case 2016

- High temperature ranging USD 400/kWh to USD 525/kWh
- Vanadium currently at USD 350/kWh and ZnBr at USD 900/kWh
- Current Li-ion costs ranging USD 350/kWh to USD 1050/kWh

Note: prices shown are for stationary applications and EV or specific residential applications could differ ¹⁵

Prices for storage systems are spiraling down: Until 2030 price cuts of more than 50% can be expected for many battery technologies

For the displayed technologies, prices in 2030 could range between USD 80 and 400/kWh down from between USD 190 to 1050/kWh in 2016

Costs

The EV fleet is expected to keep growing. The development of battery costs will play a key role in the growth rates of the EV fleet globally

By 2030 a total of 560 million vehicles can be expected in the reference case (REmap scenario foresees up to 1060 million by then)

By 2050 these figures could be about 1300 million (reference case) and 2750 (Remap)

Rapidly falling prices

Home storage

 Median prices for lithium-ion based residential storage system offers in Germany have declined roughly 60% during the displayed period of Q4 2016 to Q1 2017

Timeline

Report completion is underway

Stakeholder meetings during Energy Storage Europe (Düsseldorf) / Intersolar and others events and meetings to present draft results

Drafting of report: June 2017

Peer review: July 2017

Final report: October 2017