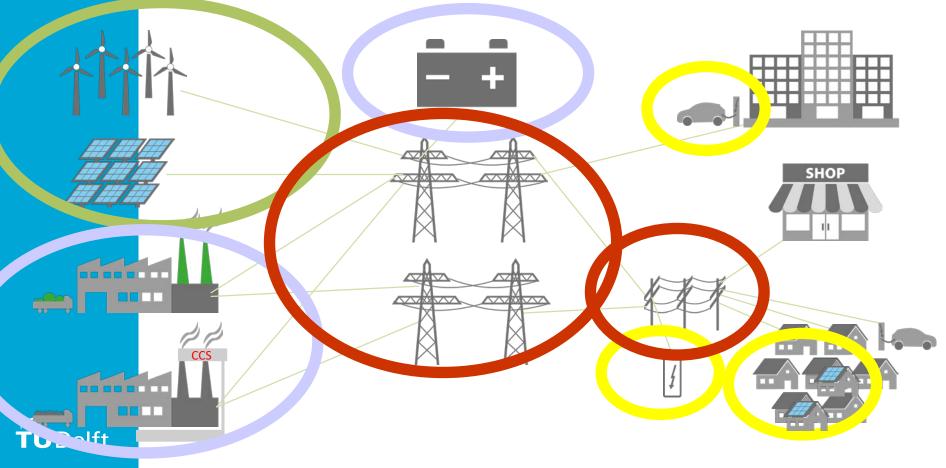
Options for additional flexibility from sector coupling – electrification of heating and transport sectors

Energy system integration requires changes to market design

Laurens de Vries


Associate Professor, Delft University of Technology

Coordinator, European Energy Research Alliance Joint Programme on

Energy Systems Integration

System integration challenges

Two examples

- Integration of electric vehicles (EVs)
- Development of non-fossil home heating options

Electric vehicle charging

- Should respond to wholesale prices;
 - To optimally make use of its flexibility
- Should avoid distribution grid overload.

Techical challenges:

- Grid overload is not likely to happen often until there are large numbers of EVs, but must be avoided
 - The control signal does not need to occur often, but needs to be effective
 - This requires planning over multiple time steps
- The DSO needs to communicate the grid constraint with the vehicle owners.

Options for avoiding grid overload from EV charging:

- Direct control by the DSO:
 - Against free market / self determination
 - Acceptability for consumers?
- Control by aggregators:
 - How to allocate grid capacity among aggregators?
 - Let aggregators bid for network capacity?
 - Consumers will need to indicate their preferences privacy issues?
- Price signals:
 - How to shift load optimally over time?
 - Only real-time prices work; all proxies (such as Time of Use prices) are ineffective.
 - Too complex for consumers? Can smart algorithms do the job?

Heating homes

- Options for replacing natural gas and oil:
- Electric heat pumps
 - (electric resistance is not attractive)
- District heating
 - Using geothermal heat, heat pumps, other renewable heat sources?
- Hydrogen gas
 - Using existing gas network
 - Technically feasible?
 - Would require replacement of all gas-burning equipment
 - Source of hydrogen: 'surpluses' of solar and wind energy
 - Large conversion losses

Home heating: system integration challenges and opportunities

- Opportunity: heat can be stored, home temperatures may fluctuate a little → cheap source of flexibility.
- Challenge: in which energy carrier to invest?
 - Heat pumps: their efficiency drops when ΔT increases \rightarrow demand spikes
 - H₂: technology ready? What about the low energy density? High energy losses in production
 - Heat networks: availability of primary energy sources? High network costs, rigid infrastructure.

Home heating: further system challenges

- All options depend on electricity, but in different degrees.
 - The impact on future electricity demand can be large.
 - How to decide about electricity network capacity investment?
- The degree of insulation affects the choice of energy carrier
- Integration with cooling and energy storage?
 - More efficient, but only possible for multiple home systems → increasing complexity

Analysis

- EVs potentially cause high demand peaks
 - Shifting these peaks is cheap, but market design for load shifting is complex.
- A similar market design challenge may develop for home heating
- But here the larger challenge is how to decide between energy carriers.
 - Different actors decide about the different carriers:
 - Electrification is a private decision
 - H₂ requires the gas grid to be converted
 - District heating requires local government initiative.

