

Technology Innovation Outlook for Advanced Liquid Biofuels

Biofuture Platform IRENA Headquarters, Abu Dhabi January 19, 2017

Trans (incl.	p ort renewa l renewable ele	ble ener ectricity	'gy shares use)			Biofu	ek: 8 10%		
60%	Biofucls: 7.20				7 200	Adv EVs: 3	Adv biofuels: 2.40% EVs: 3.44%		
50%	Adv biofuels: 1.82% EVs: 1.89%								
40%		Biofue Adv b	els: 4.20% biofuels: 0.15	5%					
30%		EVs: 0	.61%	1		1			
20%	Biofuels: 2.75% Adv biofuels: 0 EVs: 0.25%)%			11%		15%		
10%	3%		5%						
0%	2010 6) r	2030 eference	2030 Remap	2030 Doublir) ng	1			

Advanced biofuels broaden sustainable feedstock options.

Economic potential

• Advanced biofuels cannot compete with oil prices below \$80 per barrel

Feedstock cost is key

• Feedstock cost represents 40% to 70% of production cost

Fermentation

Status: Depends on Feedstock

- Fermentation plants using agricultural residues or energy crops are at an early commercial phase
- Fermentation plants using **woody biomass** are still at an early **demonstration** stage.
- Fermentation of ethanol from *municipal solid waste* is still under *development*

Ongoing R&D Approaches

- Integrating the hydrolysis and fermentation processes could reduce production costs by as much as 80%.
- In-situ removal of butanol, with membrane separation instead of distillation, can reduce energy use by half. (Principle of ButaNext project.)

Fermentation: Dupont Nevada (114ML/y)

Gasification

Status: Technology Demonstration

- Gasification can use a variety of feedstocks.
- Gasification with catalytic synthesis: many demonstration projects using forestry residues
- Gasification followed by syngas fermentation to ethanol is being demonstrated, nearly commercial.

Ongoing R&D Objectives

- Gasification still needs to prove reliable long-term operation with feedstock contaminants
- Alter-NRG is working on enhanced pre-treatment and ash removal using plasma gasification or torches
- Process optimisation is also needed to achieve target syngas composition with sufficient hydrogen content.

Gasification: Enerkem Alberta (38 ML/y)

Status

- Can use a **changing mix of feedstocks** over time.
- Agricultural residues, wood residues and wastes have all been used in pilot and demonstration plants

Ongoing R&D Focus

- More effective *catalytic upgrading* processes needed.
- Petrobras and Ensyn have demonstrated the cocracking of refinery-ready pyrolysis oil

Pyrolysis: Ensyn, Renfew, Ontario (12 ML/y)

Liquid biofuel investments have dried up in recent years.

investments have stagnated with lower oil prices and weakened policy support

Current implementation activity

- Present: 1 billion I/year production capacity
- Actual production -> ???
- Efforts centralized in Europe and North America

TECHNOLOGY DEVELOPMENT

- Support for first of a kind commercial-scale pilot plants
- Risk mitigation for other early pilot plants: getting to the Nth.

MARKET FORMATION

- Bio-refineries
- Policy incentives, targets or mandates
- Internalisation of carbon cost
- Public procurement
- Niche markets

ENTERPRISE FORMATION

- Support start-ups
- Strategic partnerships
- Sharing successful business models
- Harness potential socio-economic benefits

Thank you very much for your attention

Contact:

- Jeff Skeer(<u>Jskeer@irena.org</u>)
- Francisco Boshell (Fboshell@irena.org)