

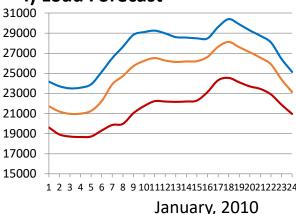
Long-term Planning of UA IPS with Higher Shares of Variable Renewable Energy

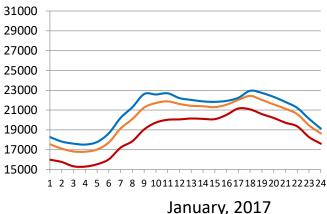
South East Europe workshop on grid integration of variable renewable energy sources 7 November 2018, Vienna

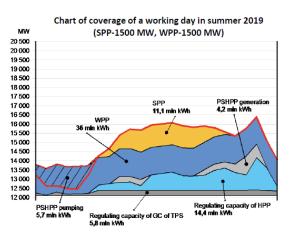
Sergii Shulzhenko
Head of Division
Electricity Demand Projections Division of
Department for Transmission System Development
Shulzhenko.SV@ua.energy

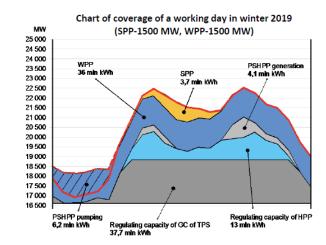
General Energy Planning Framework

- The Law of Ukraine "On Electricity Market" (adopted on April 13, 2017) is aimed at implementing the Energy Community legislation (2009/72/EC and 2005/89/EC);
- Transmission Network Code (NEURC Resolution No309 of March 14, 2018): describes the procedures of Generation Adequacy Assessment Report and TYNDP development;
- "Energy Strategy of Ukraine until 2035: Safety, Energy Efficiency, Competitiveness" (approved by the Cabinet of Ministers on 18 August, 2017): 2035 electricity production 195 TWh of which: nuclear power 94 (48%), Wind&PV 25 (13%), hydropower 13 (7%) and the rest 63 (32%) by thermal power plants;
- National Renewable Energy Action Plan through 2020 (State Agency for Energy Efficiency and Energy Saving of Ukraine)




Power Sector Planning


Power Demand Forecast:


- 1) Electricity consumption by sectors
- 2) Typical sectoral load profiles
- 3) Minimum, Maximum and Typical loads for each month (season)

4) Load Forecast

Agriculture	3650	4020	4165	4328	4503	4692	4894
Transport	7100	7497	7647	7800	7956	8115	8277
Municipal (district heating, services)	15400	16528	16842	17179	17540	17926	18338
Other non-industrial consumption	6100	6255	6333	6422	6522	6632	6755
Households	36200	38163	38831	39588	40439	41390	42445
Net Consumption	119800	125615	127691	130056	132758	135771	139143
Export	6200	7000	7000	7000	7000	7000	7000
Hydro Pumped Storage	2250	4717	5161	5606	6111	6111	6111
Transmission losses	4000	4330	4400	4410	4420	4430	4450
Distribution losses	13500	14499	14771	14797	14970	15119	15305
Power plants own needs	11700	12625	12751.25	12878.763	13007.55	13137.626	13269.002
Total consumption	157450	168786	171774	174747	178266	181568	185278

2022

53152

2023

53873

2017

51350

2025

55798

2026

57016

2027

58434

2024

54739

Generation Capacity Investment Scenarios:

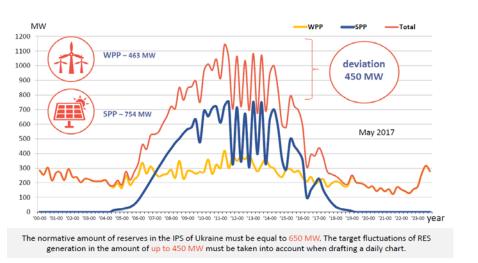
- National Emission Reduction Plan from Large Combustion Plants
- Hydro Power Development
- NPP life extension

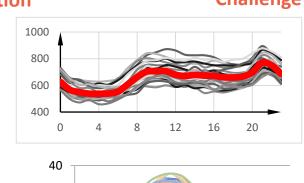
Consumption, GWh

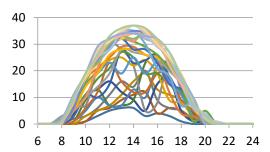
Industry and construction

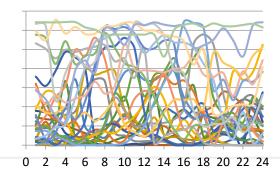
- CHP modernization

Future Generation Dispatch Scenarios:

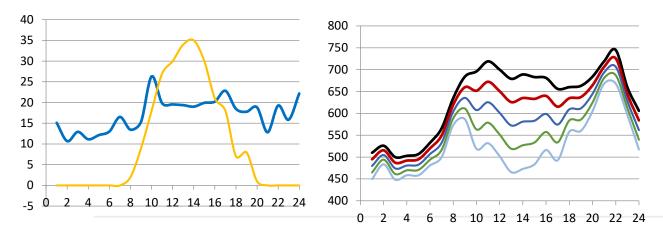

- Basic approach is assessment of generation adequacy for typical days: Winter maximum, Summer minimum, Flooding season
- N-1 criterion is defined by most powerful NPP unit 1 GW
- Most important specific factors: low level of loads, high share of NPP, narrow range of capacity changes at TPP



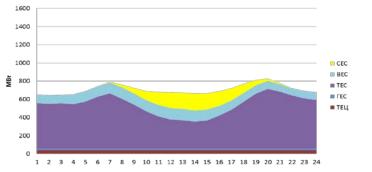

Representation of Renewables in Generation Capacity Expansion Planning Tools


Renewable Energy capacities development are represented as exogenous variables according to "Energy Strategy of Ukraine until 2035: Safety, Energy Efficiency, Competitiveness" and "National Renewable Energy Action Plan through 2020"

Challenge 1 – poor prediction of Wind and PV generation

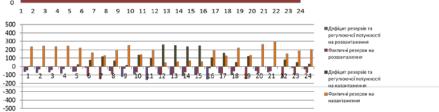

Generation scheduling with high share of variable renewable energy (Burshtyn TPP Island Case)

Burshtyn TPP Island – "Isolated" sub-power system within IPS of Ukraine: population – 3 million, square – 27000 square km, maximum export capacity <= 650 MW,


daily consumption - Winter Max - 1050 - 1150 MW; Summer Min - 450 - 500 MW

Load profile transformation for Burshtyn TPP Island (actual data for 30 April, 2018)

Hours	10	11	12	13	14	15	16	17
Consumption, MW	696	719	700	679	689	683	681	656
Wind (33.9MW)	26	20	20	19	19	20	20	23
PV (39.8MW)	18	27	30	34	35	30	21	18
Consumption-Wind-PV Wind (33.9), PV(39.8)	652	672	650	626	635	633	640	615
Consumption-Wind-PV								
Wind (67.8), PV(79.6)	607	625	601	572	581	583	599	574
Consumption-Wind-PV	563	579	FF1	519	527	533	557	F24
Wind (101.7), PV(119.4)	503	5/9	551	213	527	555	55/	534
Consumption-Wind-PV								
Wind (135.6), PV(159.2)	519	532	502	466	473	483	516	493



	2018	April	2022 (forecast)		
Generating capacity	MW	%	MW	%	
Burshtynska TPP	2351	87.17	2351	73.49	
Kalush TPP	200	7.42	200	6.25	
Tereble-rykska HPP	27	1	27	0.84	
Drogobych CHP	17	0.63	17	0.53	
Renewables, including:	102.05	3.78	604.04	18.88	
- PV	50.76	1.88	236.07	7.38	
- Wind	34.50	1.28	275.80	8.62	
- Small Hydro	13.62	0.5	82.00	2.56	
- Biomass	3.17	0.12	10.17	0.32	

Load for 2022, Summer holiday, no export

Deficit of reserves: Max ramp-up – 260 MW Max ramp-down – 150 MW

Tools Used and Network analysis

-	Power flow analy	ysis – Grapl	h Scanner ((Ukrainian),	Digsilent PowerFacto	ry
---	------------------	--------------	-------------	--------------	-----------------------------	----

Power Flow Analysis Tools were intensively used for Chernobyl PV Project with Installed capacity – 1200 MW

- Generation Adequacy Assessments (deterministic modelling) various simulation modelling (MS-Excel), multi-stage dynamic optimization modelling (GLPK solver), one-day optimization (MS-Excel+OpenSolver), multi-day optimization (MS-Excel+VBA+OpenSolver) is tested
- Generation Adequacy Assessments (stochastic modelling under development, tasting phase) one-day optimization (MS-Excel+VBA+OpenSolver), seasonal multiday optimization (MS-Excel+VBA+OpenSolver)

Ukrainian Legislation regarding Renewables regulation is still under development:

- 2019 expected adoption of "Renewable Auctions" low
- Regulation for new generating capacities implementation is under consideration

THANK YOU!

Long-term Planning of UA IPS with Higher Shares of Variable Renewable Energy

South East Europe workshop on grid integration of variable renewable energy sources 7 November 2018, Vienna

Sergii Shulzhenko
Head of Division
Electricity Demand Projections Division of
Department for Transmission System Development
Shulzhenko.sv@ua.energy