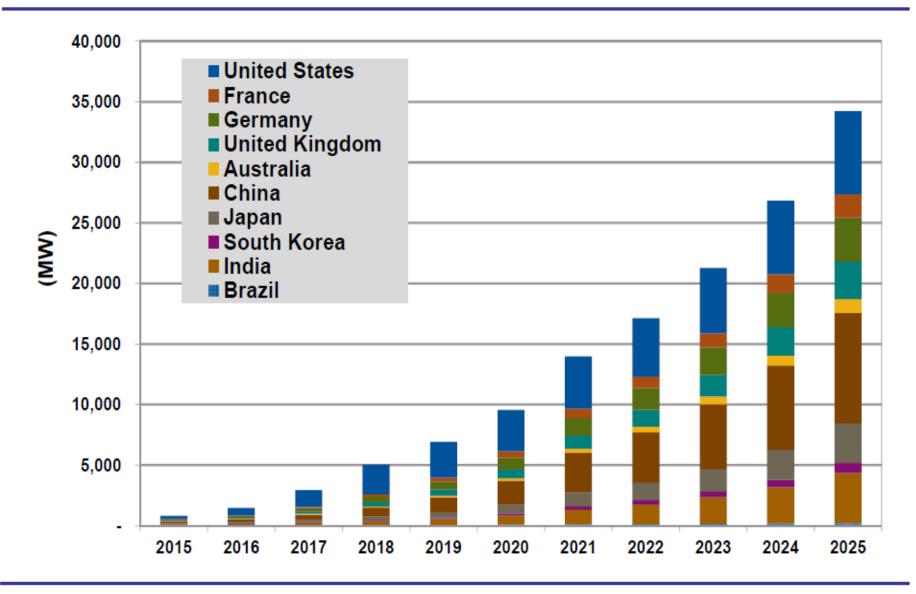
Policy Implications with Cost Drop of Battery Storage


IRENA Battery Storage Costs & Market Outlook to 2030 Energy Storage Europe 2017

Dr.-Ing. Harald Diaz-Bone Düsseldorf, 15 March 2017

Presentation Outline

- Policy goals affected by cheap battery storage
- Policy implications for the electricity sector
- Policy implications for the transport sector
- Cross-cutting policy implications

Chart 1.1 Annual Installed Energy Storage Power Capacity, Top 10 Countries: 2015-2025

(Source: Navigant Research)

Policy goals affected by cheap battery storage

- Access to reliable and sustainable electricity
- High shares of volatile renewable energy
- Sustainable mobility
- Sustainable economic development
- Technology leadership

Policy implications for the electricity sector

- RMI 2014: Avoid grid defection through proactive regulation
- Carbon Trust 2016: Align incentives and remove barriers, monetize system benefits, reduce policy uncertainty, engage broad stakeholder in adapting market structures, define standards for performance and operation of storage
- ACORE 2016: A variety of ESS rises "behind the meter" (backup power, demand shifting/charge management, solar self-consumption, fast-charging of EVs) -> aggregate to provide additional value as capacity or grid resources
- -> Grid regulators need to (re-)act now!

POSSIBLE TRAJECTORIES FOR ELECTRICITY GRID EVOLUTION

PATH 1 INTEGRATED GRID

• EXPORT COMP. (NEM.FIT, VOST.) • TOU PRICING • LOCATIONAL HOT SPOTS • ATTRIBUTE BASED PRICING One path leads to grid-optimized smart solar, transactive solar-plus-battery systems, and ultimately, an integrated, optimized grid in which customer-sited DERs such as solar PV and batteries contribute value and services alongside traditional grid assets.

Pricing & Rate Reform

New Business Models

New Regulatory Models

PATH 2 GRID DEFECTION

COST-OF-SERVICE REGULATION . STRANDED ASSETS Another path favors non-exporting solar PV, behind-the-meter solar-plus-battery systems, and ultimately, actual grid defection resulting in an overbuilt system with excess sunk capital and stranded assets on both sides of the meter.

·PERFORMANCE-BASED REGULATION · NY REV · CAMORE THAN SMART · ENERGIEWENDE Solar PV and batteries play an important role in the future electricity grid, but decisions made today will encourage vastly different outcomes.

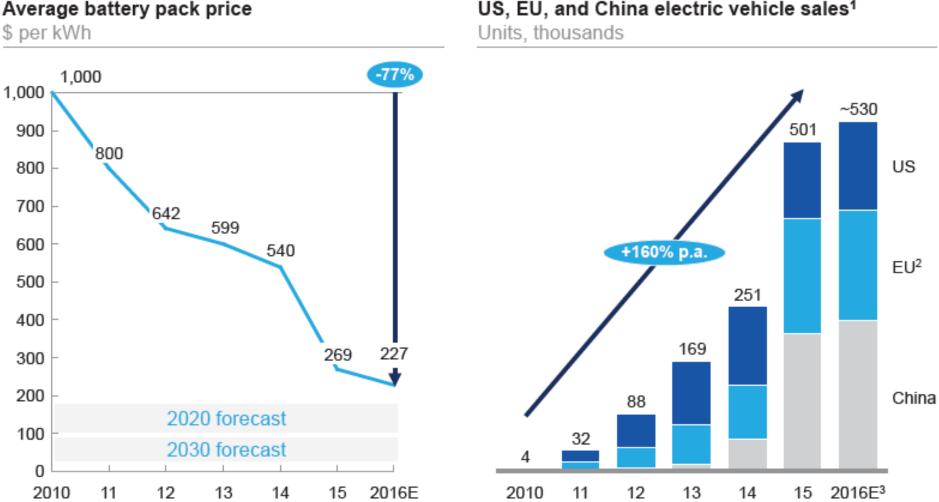
GRID

DEFECTION

+ NO EXPORT PRICING + FIXED CHARGES

NTRAL GENERATION · VERTICALLY INTEGRATED UTILITIES

IONG INTEGRATED

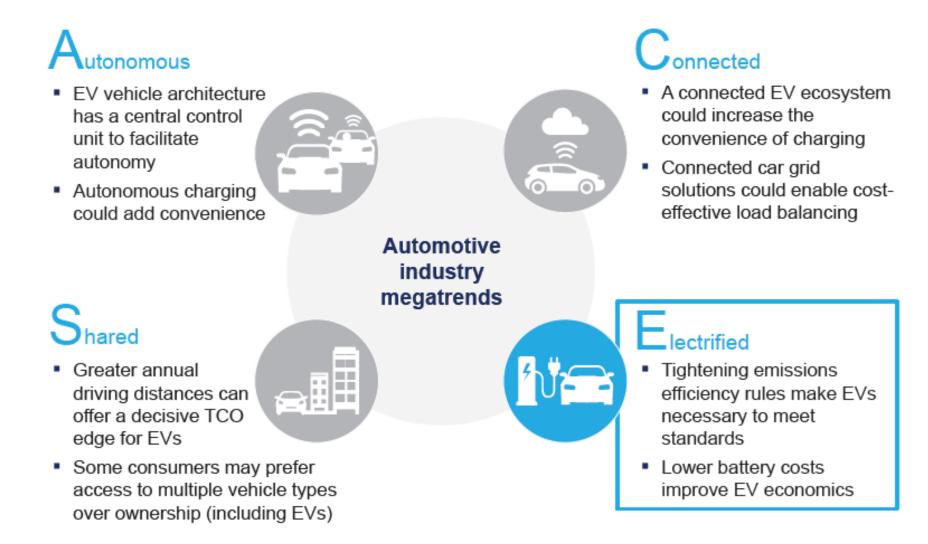

Source: Rocky Mountain Institute

Policy implications for the transport sector

- McKinsey 2017: Automobile consumer demand is shifting in favour of e-mobility, key technologies improve faster than anticipated -> accelerate investment in charging infrastructure at national, regional, and city levels
- TonySeba 2016: Disruption of the automobile market before 2030
 -> avoid stranded investments in traditional car technologies
- Shift in transport paradigm towards driverless, shared e-mobility has strong implications on the labour market, traffic rules, consumer behaviour and mobility patterns

-> Transport policy makers need to (re-)act now!

Rapid decreases in battery prices have helped accelerate EV sales, especially in Europe and China



US, EU, and China electric vehicle sales¹

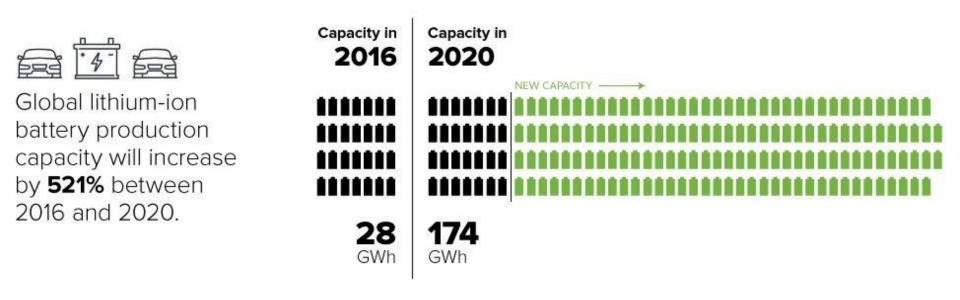
1 Plug-in hybrid electric vehicles and battery electric vehicles; excludes low-speed vehicles and hybrid electric vehicles without a plug 2 Includes Denmark, France, Germany, Ireland, Italy, the Netherlands, Norway, Portugal, Spain, and the UK 3 Extrapolated based on Q1-Q3 2016 IHS data and assuming continued growth in all three markets in Q4 SOURCE: IHS, Bloomberg, New Energy Finance

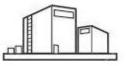
Automotive industry megatrends are self-reinforcing and will likely accelerate the transition to e-mobility in the long term

Examples of potential EV reinforcement points from other automotive megatrends

Tony Seba

How Silicon Valley Will Make Oil, Nuclear, Natural Gas, Coal, Electric Utilities and Conventional Cars Obsolete by 2030.

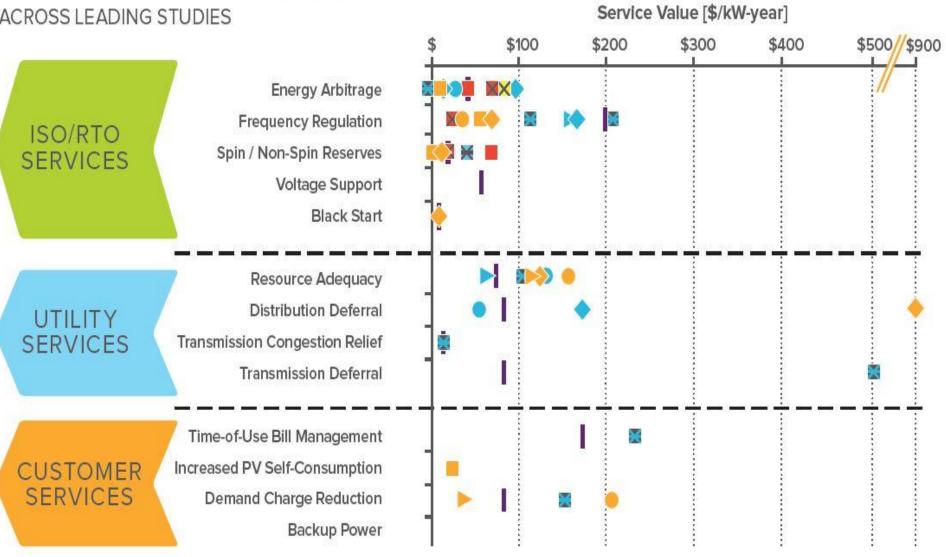

Cross-cutting policy implications


- Attract investment in battery production and new products and services
- Remove barriers and hurdles for the private sector to engage in new business plans around battery storage
- Ensure transparency through national reporting requirements on energy storage services and devices
- Agree on common reporting guidelines for energy storage services and technologies at international level (e.g. IRENA)

The race for new opportunities around ESS has already started.

CHINA IS LEADING THE CHARGE

Lithium-ion megafactories in China to grow capacity 6X by 2020



China's battery sector continues to be a hub for most of this growth.

Source: http://www.visualcapitalist.com/china-leading-charge-lithium-ion-megafactories/

	2016 Capacity (GWh)	2020 Capacity (GWh)	% of Global Total (2020)
United States	1.0	38.0	22%
China	16.4	107.5	62%
Korea	10.5	23.0	13%
Poland	0.0	5.0	3%
Total	27.9	173.5	100%

ENERGY STORAGE VALUES VARY DRAMATICALLY ACROSS LEADING STUDIES

Source: Rocky Mountain Institute

Events

IRENA event on 'Battery storage cost and market outlook 2030' 15 – 16 March 2017 Düsseldorf, Germany

Berlin Energy Transition Dialogue 20 – 23 March 2017 Berlin, Germany

Kick-off Meeting for RRA Mali 3 – 6 April 2017 Bamako, Mali

More Events

IRENA Report Shows Renewables Are Gaining Ground in Nearly Every Measure