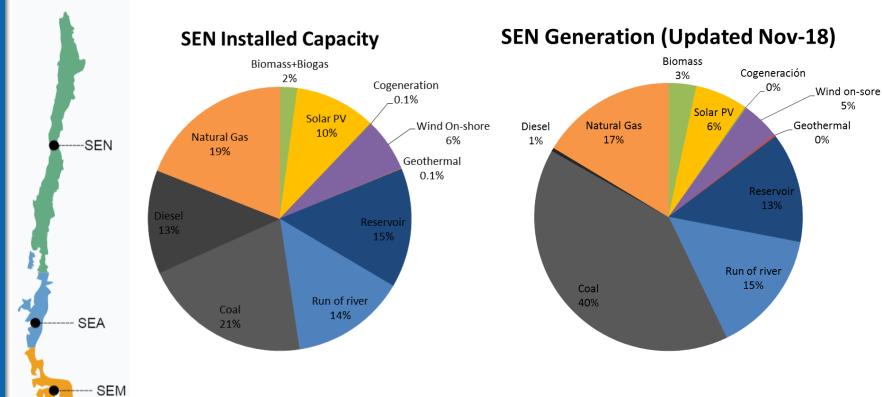
Long-term Energy Planning in Chile

Ministerio de Energía



Prospective and Regulatory Analysis Division November 2018

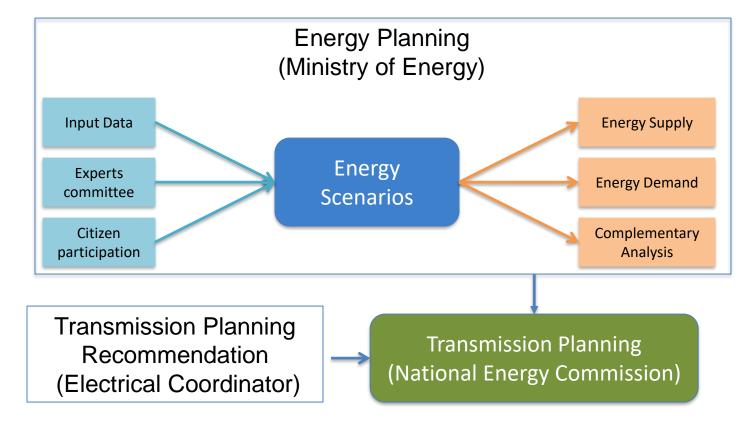
Gobierno de Chile

Chilean context

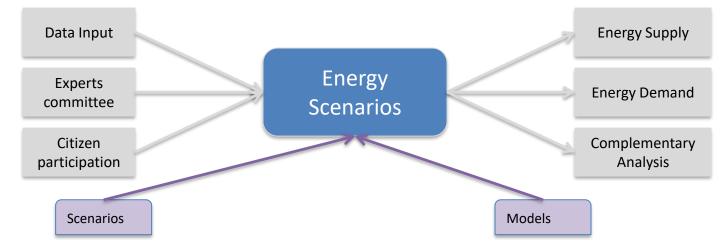
Energy Scenarios under the electric transmission regulation

In Chile the regulation on electric transmission expansion has two main components:

- Long-term energy planning (Ministry of Energy): Energy planning.
 30 years simulation. Updated every 5 years.
- 2. Transmission expansion plan (National Energy Commission): Transmission planning. 20 years simulation. Updated every year.


Considerations on the Energy Planning

The energy planning process has to include energy demand and supply projections, considering:


- 1. Renewable generation areas or poles
- 2. Distributed generation
- 3. International energy exchanges
- 4. Relevant environmental policies
- 5. Energy efficiency goals
- 6. Strategic energy plans of each region in the country

Long-term Energy Planning

00

Long-term Energy Planning

- Identify the main variables that have high impact and uncertainty in the future energy sector
- These variables are projected

(@(@

• Create every scenario as a believable story

- The energy demand model (Econometric simulation base on LEAP) is limited to the available information
- The electric expansion model PET (Co-optimize Gx+Tx) doesn't include short term constraints.
- The electric expansion model PET doesn't give the amount of flexibility needed for the future.
- The distributed generation model (Econometric simulation) is focused on the residential sector.

LTEP process

Factors	Scenario A	Scenario B	Scenario C	Scenario D	Scenario E
1) Projects social disposition	+ Cost & with CCS	Free	Cost & with CCS	+ Cost	+ Cost
2) Energy demand	Low	High	Media	Low	High
3) Battery storage technological change	High	Low	Medium	Medium	High
4) Environmental externalities costs	Current	+High	Current	Current	+High
5) NCRE CAPEX	Low	Low	Medium	High	Low
6) Fuel prices	Medium	High	Low	Low	High

LTEP results

The principals result for Chile in the process 2016-2018 process are:

- By 2050 there will be 40% of electric vehicles and 100 % electric buses.
- By 2046, 100-150 000 households with **distributed generation**.
- By 2030, 60% of **renewable generation** in all scenarios, and in 2 scenarios we reach **90% by 2046**. (Without considering the undergoing process of decarbonization)
- Two scenarios show the need to upgrade LNG regasification terminals.
- The **international interconnections** shows bidirectional flows, that exports energy during solar hours and importing energy in the night.

Main achievements of first process

- Participatory process in every stage
- First ever long-term energy planning process, including e-mobility, electric heating and distributed generation projections.
- A methodology to define energy scenarios was established
- It has become a **validated source of information** for the energy sector, and a support for policy analysis and design.

Improvements for next process

Energy scenario

- <u>Scenarios</u>: to include other uncertainty factors in order to make more representative scenarios
- <u>Models:</u> to improve current methodology in order to include transmission issues and short-term constraints; continuous improvement of demand model

Energy supply

- <u>Generation expansion plans</u>: continuous work with the National Energy Commission for generation expansion plans integration into transmission expansion process
- Long and short-term analysis: to study a methodology to feedback generation expansion model

Complementary analysis

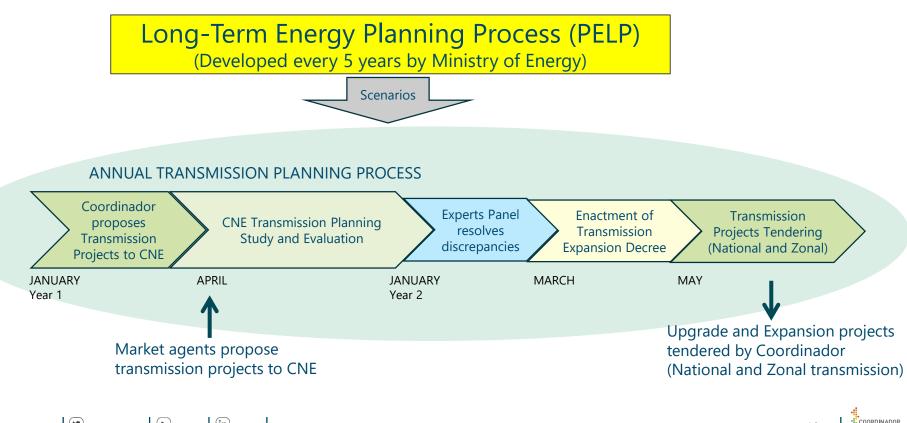
- <u>Resiliency</u>: to include other variables linked with the concept, besides climate change.
- <u>Distributed generation</u>: to build a model for penetration estimation in commerce and industrial economic sectors
- <u>Energy demand profile</u>: to visualize hourly effects with higher penetration of distributed generation and e-mobility on the energy demand profile and possible impacts onto electrical distribution infrastructure

Thank you

Ministerio de Energía

Prospective and Regulatory Analysis Division November 2018

Gobierno de Chile



Long-term Energy Scenarios in Transmission Planning

Juan C. Araneda Transmission Planning Manager

LTES-CEM Webinar - 29 November 2018

Transmission Planning and Delivery (Electricity Law 20.936/2016)

www.coordinador.cl 🕑 @coord_electrico

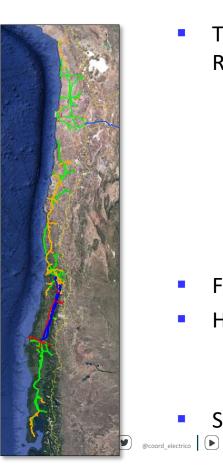
1 3 COO

New Transmission Planning Criteria (Electricity Law 20.936/2016)

- Minimize supply **risks**, considering events, such as:
 - cost increase or unavailability of fuels
 - delays or unavailability of energy infrastructure
 - Natural disasters or extreme hydrology conditions
- Promote the offer and facilitate competition in order to supply consumers at minimum price
- Economically efficient and necessary projects in the different energy scenarios
- Modification of existing transmission facilities in an efficient way

Transmission planning must include **roominess** and **redundancies** in order to incorporate all previous criteria

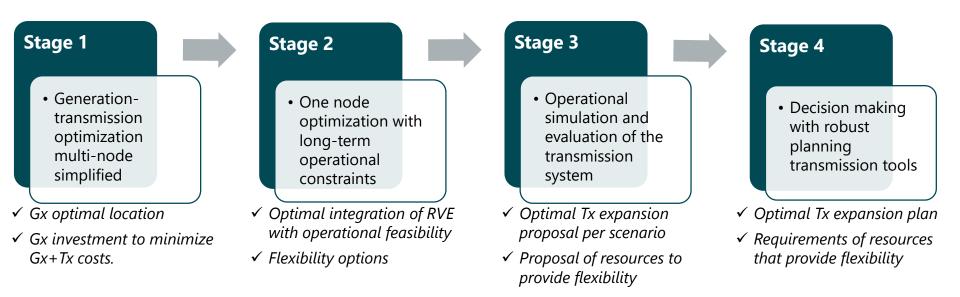
New Transmission Planning Criteria (Electricity Law 20.936/2016)


- Minimize supply risks, considering events, such as:
 - > cost increase or **unavailability** of fuels
 - > delays or unavailability of energy infrastructure
 - > Natural disasters or extreme hydrology conditions
- Promote the offer and facilitate competition in order to supply consumers at minimum price
- Economically efficient and necessary projects in the different energy scenarios
- Modification of existing transmission facilities in an efficient way

Transmission planning must include **roominess** and **redundancies** in order to incorporate all previous criteria

- 1. Adequacy:
 - > CAPEX < NPV[Δ (OPEX+CENS)]
- Security of Service: N-k criteria
 Resilience: resist LPHI events
- 3. Competition: Open Access to the Grid
- 4. Sustainability: Efficient use of Territory
- 5. Robustness: Long Term Vision and Flexibility

Flexible Transmission Market Oriented



- Transmission support associated to Variable Renewable Energy (VRE):
 - Size and location of reserves
 - Hydro, solar and wind forecasting
 - Inertia constraints
 - Battery Energy Storage Systems BESS:
 - Expansion deferral
 - Congestion relief
- Flexible AC Transmission Systems: FACTS
- HVDC Transmission Systems:
 - Long distance of Renewable potential
 - Back-to-Back converters (interconnections)
- Smart grid: SIPS, WAMPAC, DLR

YouTube in Linkedin Coordinamos la Energía de Chile

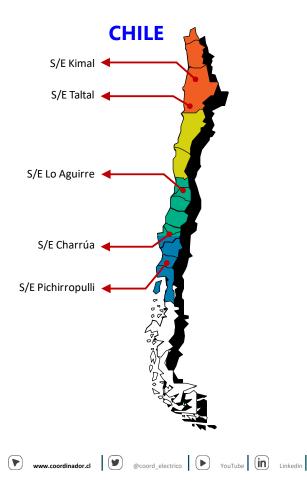
TRANSMISSION PLANNING PROCESS 2018 CO-OPTIMIZATION GENERATION – TRANSMISSION

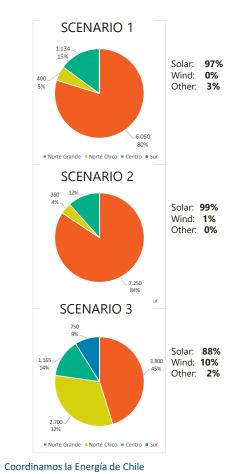
Why to CO-OPTIMIZE?

Transmission expansion must consider Generation options, location and costs, in order to optimize the total system investment and operational costs

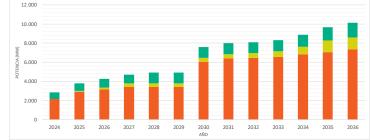
SCENARIOS OF NEW GENERATION CAPACITY

Main Assumptions	Data according to PELP			
Main Assumptions	Scenario A-Base	Scenario B	Scenario C	
	CSP	Referential	High	Referential
	Solar-PV	Referential	Low	Referential
Investment Costs of Renewable Generation Technologies	Wind	Referential	Low	Low
reemologies	Geothermal	Referential	Referential	Referential
	Hydro	Referential	Referential	Referential
Storage Systems	BESS	Referential	Low	Referential
Storage Systems	Hydro Pumping	Referential	Low	Referential
Investment Costs of other Technolog	Referential	Referential	Referential	
Environmental Constraints and Social Oppositio	High	High	High	
Fuel Costs	Referential-ITP	Referential-ITP	Referential-ITP	
Electricity Demand Forecasting	Base-Coordinador	Base-Coordinador	Base-Coordinador	

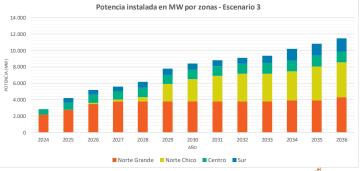

www.coordinador.cl 🕑 @coord_electrico


Referencial cost for all generation technologies Low cost for L solar-PV and wind t technologies

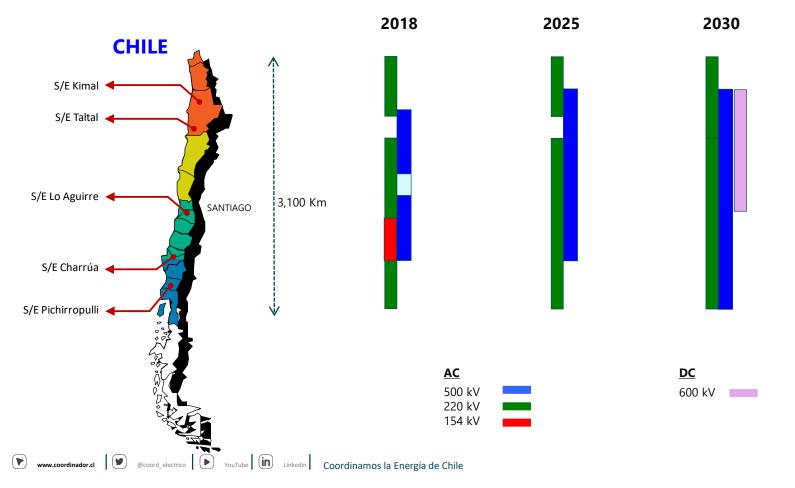
Low cost for wind technology


1 8 COORDINADO

SCENARIOS OF NEW GENERATION CAPACITY IN 2030



Potencia instalada en MW por zonas - Escenario 2



19

COORD INADOR

NATIONAL TRANSMISSION NETWORK DEVELOPMENT

20